

Kalmar Växjö

From wood to wonders.

Recall: Kick-off meeting in Helsinki

Joints

Primary purpose

Foster high-performance hardwood structures by developing economic, reliable and innovative joint technologies for hardwood members and the design thereof.

HOW?

UNDERSTAND – COMPLETE – OPTIMISE – IMPLEMENT

KICK-OFF: UNDERSTAND...

Contributions to load-carrying capacity of joints

Rope effect in dowelled joints

Opened specimen after test

Beech LVL with cross layers

Load-displacement curve

KICK-OFF:... COMPLETE...

Groups of axially loaded screws

Results

		α = 0º end-grain joint	α = 45º tension lap joint	α = 90º loading perpto-grain
et failure mode η requirements	beech & birch	Withdrawal, <i>n</i> _{ef} ~ n <i>a</i> ₂ ≥ 3 <i>d</i> , <i>l</i> _{emb} ≥ 10 <i>d</i>	withdrawal a ₁ ≥ 5 <i>d</i> , a _{1,CG} ≥ 5 <i>d</i>	withdrawal, $n_{ef} \sim n$ $a_1 \geq 7d$, $a_2 \geq 5d$ (EC5) $a_1, a_2, a_{2,CG}$ acc. ETAs if $l_{emb} \geq 4d$ block or row shear, $n_{ef} < n$ $a_1, a_2, a_{2,CG}$ acc. ETAs steel failure, $n_{ef} \sim n$ $a_1, a_2, a_{2,CG}$ acc. ETAs
tar wi	beech LVL	withdrawal $a_{2,tan} \ge 3d$, $a_{2,rad} \ge 4d$, $I_{emb} \ge 11d$	-	block shear, $n_{ef} << n$ $a_1, a_2, a_{2,CG}$ acc. EC5 withdrawal, $n_{ef} \sim n$ $a_1 \times a_2 \ge 10d \times 10d$

KICK-OFF: ...OPTIMISE...

Increase stiffness and capacity

Increase stiffness and capacity – Rough shear planes

Milestone 2 🗸

KICK-OFF: ...OPTIMISE...

BOF (nonlinear beam-on-foundation) modelling

BOF – Example: Modelling of rope effect

Thank you!

530

 \equiv Pollmeier

ForestValue

Project hardwood_joint is supported under the umbrella of ERA-NET Cofund ForestValue by BMLFUW (AT), ADEME (FR), FNR (DE) and Vinnova (SE). ForestValue has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 773324.