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Project structure

WP1 - Project management and coordination

WP2 — Field data collection and extraction of remote sensing
data

WP3 — Hierarchical decision-making system for efficient forest
mapping

WP4 — Demonstration cases (Latvia in focus)

WP5 — Societal values

WP6 — Dissemination and communication
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National forest maps - examples
from Scandinavia

Total Wood Volume in m3/ha

m3/ha
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Remote sensing data

Raster databases
Estimation of with estimated

forest forest variables
variables

Field surveyed plots, training
data, from the Swedish
National Forest Inventory 6



National forest maps from satellite
image data

Time-series of maps for years 2000, 2005, 2010,
and 2015. Produced by combining satellite image

data (Landsat, SPOT, Sentinel-2), canopy height
from aerial images (year 2015), and field data
from the Swedish National Forest Inventory.

Provided as open data by SLU (SLU Forest Map).

Variables

Stem volume

Mean tree height
Mean diameter

Basal area
Above-ground biomass
Tree species

Cell size

25x25m



National forest maps from airborne

Version 1
2009-2016

Version 2
2024-10-01

Norska havet

Finland

Norge

Lettland

Litauen

laser scanning

Produced by combining laser data
from the Swedish National Land
Survey and field data from the
Swedish National Forest Inventory.

Provided as open data by the Forest
Agency (Forest attribute map)
(https://www.skogsstyrelsen.se/
skogligagrunddata)

Variables

e Stem volume

* Mean tree height

* Mean diameter

* Basal area

e Above-ground biomass

Cell size
* 10x10m


https://www.skogsstyrelsen.se/skogligagrunddata
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Linear regression using ALS data

Training Data Set

¢

Learning Algorithms

~

Variables

Linear Regression Models

Height (m)

Hgv = By + B1hpos + &

Diameter (cm)

Dgv =B, + [31hpgo + Bz(hpgox vr) + €

Basal area (m?/ha)

Ba = By + By(hpgo @ vr) + B,Std(lh) + g

Stem volume
(m3/ha)

W = By + Bihygo +
B,Std(lh) + g

Bz(hpao x vr) +

Above ground
\ biomass (ton/ha)

VB =By + Bihygo + Bovr + B,Std(lh) + g )

-

v

Input Variables |

Training

H

Predicted Output

Actual Output

The best-fit

model with

prediction
error

Selusl v Predies e

Linear regression model

Variables

RMSE RMSE (%)
Mean tree
height (m) 1.7 12.6
Mean tree
diameter (cm) 4> 24.1
Basal area
(m?/ha) 7.8 38.4
Stem volume
(m*/ha) 2.3 20.3
Above-ground
biomass 1.6 19.9
(ton/ha)
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Predicted variables

Mean tree height
(m)

Mean tree diameter
ear) (Cm)

Training Data
Set (Using
Raster Metrics)

Basal area
(m?/ha)

Stem volume
(m*/ha)

Above-ground
biomass (ton/ha)

Network
Architecture
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ResNet for transfer learning using
ALS raster image data

Feature
Map

00000

Training Data Set Output Feature Fine Tune using Forest Variable
(‘Lsa';‘ag:'agsie; :(";?Se ResNet Map NN Custom Model Predictions

[.

Transfer Learning

Dense Layer 1 > Dropout » Dense Layer 2 » Dropout » Dense Layer 3 » Dropout » Output Layer
-m ReLU Activation Dropout (0.1) ReLU Activation Dropout (0.1) ReLU Activation Dropout (0.1) Linear Activation

Detailed ]

Architecture
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Selected points r=25

PointNet using ALS data

Original points

Input cloud points

Selected points r=25
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Forest iophysical parameter

estimation via Machine Learning and
Neural Network approaches

4 Swedish

National
Forest
Invento
Y

e
d Swedish )

National
Airborne
Laser

\, Biophysical

Scannin
- e 4

Al o

Parameters

Percentiles
Point density
Standard
Deviation

Machine

Learning

training &
evaluation

=

Target Variable R? / NRMSE

Neural
Networks

Hgv 0.84/7.3%
Dgv 0.66 /4.9%
Basal area 0.64/9.1%
Volume 0.75/6.1%
Biomass 0.72/6.9%

ML - Random
Forest

R? / NRMSE
0.80/8.3%
0.68/5.4%
0.64/9.2%
0.74/6.1%
0.71/7.0%

Quantitative Comparison of ML Models

ML - \‘

XGBoost

R? / NRMSE
0.82/7.8%
0.69/5.2%
0.68/8.7%
0.77 /5.8%
0.75/6.5%

Biophysical Parameters Maps Generation
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National forest inventory data from
Latvia

* Transfer of the project’s algorithms to the

territo

ry of Latvia using sample plot data from

another country.

* Datap

reparation.

Compare NFI to LiDAR scanning (open
data in Latvia):

* sample plot coordinates vs LiDAR
metadata,

* selecting data of scanning and plot
measurement data within £ 1
year,

* ~ 3500 sample plots with trees for
classification,

» forest and trees on agriculture
lands.

 Latvia NFI based growth algorithms will be
used to equalize LiDAR and NFI measurement
in time.
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A benrk dataset for very high-
resolution tree detection in deep
learning applications: VHRTrees

S~ Ei Sample image patch

L % '\\ -
| \
A
¢ 5>
Region | Patch | Sample | Automatic annotated Roboflow
Karacabey . 4,191 .
Dikili 11,767
Aliaga 6,008
Seferihisar 1,385
Selguk 2,615
Dataset
Train 1,023
Valid 226
Test 222
Total 1,471 | 25,966

different regions
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Methodology
Data Acquisition Dataset Generation
GE Images Mam:lal Generating Splitting into
checking bounding boxes  image patches
GE: Google Earth

Vi

Performance Evaluation Model Training

Visualization &

Metrics Analysis :
Comparison

YOLOVS YOLOV7 YOLOv8 YOLOVS
X

sm,| - s,m, gelan, gelanc

Results .
Visual results ‘ . Expgr‘nmen‘l’ results




A Swin Transformer, YOLO, and

Weighted Boxes Fusion-Based approach

for tree detection in satellite images

This paper won the Young Researchers Award at ' SIU 2024

This article proposes combining Swin transformers and YOLO
models with weighted boxes fusion to enhance detection
accuracy. Swin transformers offer broad variation detection,
while YOLO provides sharp, precise results. Together, the
method improves tree detection accuracy by 3.7% over Swin
transformers and 13.1% over YOLO.
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ForestValue;

Project impacts and potential for
industrial implementation / societal
contextualization

* Forest Management and Monitoring: The predictive models developed can
enhance forest management practices by providing accurate forecasts of forest
variables, and other ecological variables. This offers significant value for the
forestry industry, especially in sustainable resource management and
optimization of timber production.

* Environmental Conservation: These predictive tools can be vital for
environmental conservation efforts, aiding in tracking deforestation,
reforestation, and biodiversity changes. This can be particularly beneficial for
governmental agencies and NGOs focused on environmental protection.

* New Paths for Research: The integration of multiple data sources and machine
learning models (Neural Networks and CNNs) opens new avenues for further
research in ecological modeling, particularly in improving the precision of forest
variable predictions.

18
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The value of scientific cooperation

* Linnaeus University
» Swedish University of Agricultural Sciences

Forest Science

Societal values Computer Science

e University of Helsinki Start-up tech company * Yeditepe University
* |stanbul Technical University

* Katam Technologies . e
* Linnaeus University
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