

CRESTIMB: InCREased Service life of innovative TIMber Building systems Martina SCIOMENTA, PhD University of L'Aquila

Agenda

CRESTIMB

- 1. INTRODUCTION AND BACKGROUND
- 2. THE CONSORTIUM
- 3. PROJECT OBJECTIVES
- 4. PROJECT DESCRIPTION
- 5. PRELIMINARY RESULTS
- 6. PROJECT CHALLENGES
- 7. CONCLUSIONS AND RECOMMENDATIONS
- 8. ACKNOWLEDGMENTS

Building with timber

Low emissions

Speed of construction

Material efficiency

Disadvantages of CLT and post-and-beam systems

Limited space

Expensive/
Complex

Difficult demolition

THE NEED FOR A NEW APPROACH:

- 1. Open-plan layouts
- 2. Enhanced durability
- 3. Potential for disassembly and reuse


CRESTIMB goal:

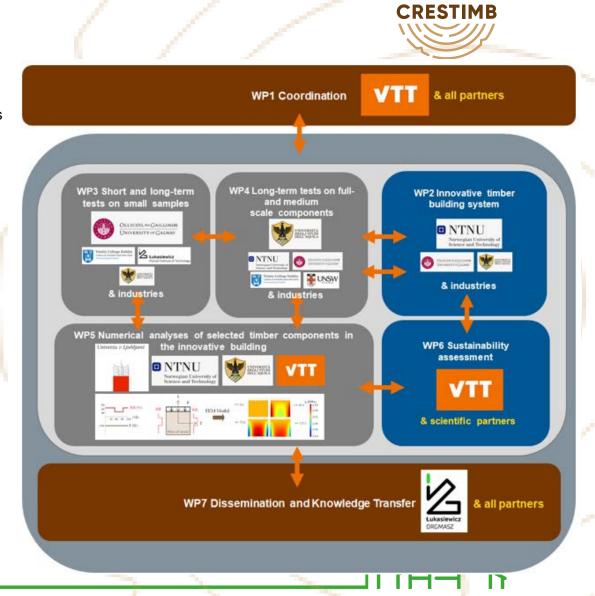
Develop a novel structural system combining MRTF frames with DCLT floors.

THE CONSORTIUM

- Duration: 1.4.2024-31.3.2027 (3 years)
- Coordinator: VTT Technical Research Centre of Finland Ltd (Stefania Fortino)
- 16 partners (8 European RTO and 7 industries from six European countries: Finland, Norway, Ireland, Slovenia, Poland, Italy, and one RTO as 3rd country partner from Australia)

University of New South Wales

PROJECT OBJECTIVES

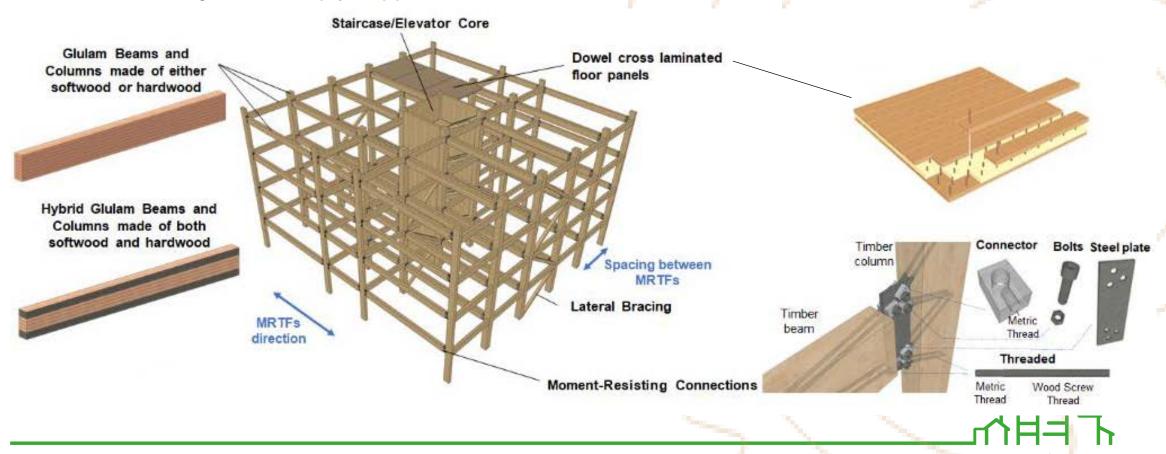


- CRESTIMB is developing an <u>innovative timber system</u> for multi-storey buildings with open spaces.
- Long-term performance will be evaluated through advanced numerical modelling and experimental testing on softwood, hardwood, and full-scale elements.
- Results will be made accessible via a data interface using the VTT Modelling Factory and applied in **environmental studies** including Life Cycle Assessment (LCA).
- Collaboration with industrial partners will support the creation of feasible and cost-effective design guidelines.

PROJECT DESCRIPTION

- WP1 Coordination
- WP2 Innovative timber building system (NTNU)
 - WP 2.1 Identification of the structural frame and integration of selected components in the innovative system
 - WP 2.2 Moment-resisting connections with screwed-in threaded rods
 - WP 2.3 Hardwood (and hybrid) glued laminated timber for beams and columns
 - WP 2.4 Dowel cross laminated timber floors
 - WP 2.5 Design recommendations for the long-term performance of the system and its components
- WP3 Short and long-term tests on small scale wood samples
- WP4 Long-term tests on full- and medium-scale components
 - WP 4.1 Long-term tests of medium-size components
 - WP 4.2 Long-term tests of full-size components
- WP5 Numerical analyses of selected timber components in the innovative building
 - WP 5.1 Structural analysis of the timber building system
 - WP 5.2 Hygro-thermal and mechanical analyses of components
 - WP 5.3 Development and validation of a new rheological model for wood
- WP6 Sustainability assessment
- WP7 Dissemination and knowledge transfer

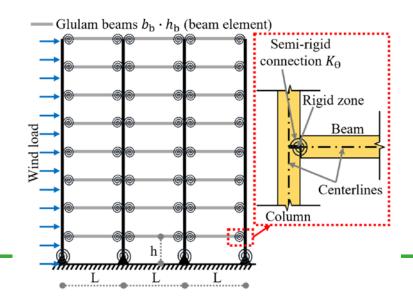
www.crestimb.com



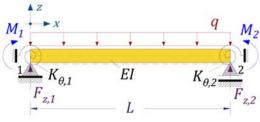
THE INNOVATIVE TIMBER SYSTEM

www.crestimb.com

The system includes moment-resisting timber frames (MRTFs) made of glulam beams and columns, semi-rigid moment-resisting connections, and dowel-cross laminated floor panels simply supported on the beams of the MRTFs.


PRELIMINARY RESULTS

www.crestimb.com


1. FRAME IDENTIFICATION (ULS, SLS wind induced accelerations, SLS deflections and human induced vibrations

- Dimensions of glulam elements and connection stiffness (columns: 430×585 mm, beams: 2×215×585 mm)
- Storeys, bays and frames 4–6 storey buildings with 3 m floor height, 8 m spans

Estimated load and moments

$$q_{QP} = g + \psi_2 \cdot q$$

- $q_{\rm quasi\,permanent} \approx 10\,{\rm kN/m\,or} \approx 2.5\,{\rm kN/m^2}$ 300mm-thick floor, $c/c=4.0\,{\rm m}$, considering weight of non-structural elements, and live load of 2-3 kN/m²
- M_{connection,sustained} ≈ 23-38 kNm
 ≈ 5 8% of mean experimental resistance → conservatively 10%
- M_{span,sustained} ≈ 42-57 kNm
 ≈ 4 6% of mean experimental resistance → conservatively 10%.
- $F_{
 m ax,sustained,rods} = {
 m less than 10\% of mean withdrawal capacity}$ By use of the component method

PRELIMINARY RESULTS

2. FLOOR IDENTIFICATION

The thickness of DCLT floors is expected to be approximately 250 - 300 mm with at least **5 cross layers of softwood boards** (minimum strength class of C16 spruce).

Birch dowel diameter and spacing will be varied but existing results indicate that spacings of 100 mm and a dowel diameter of 20 mm may need to be targeted.

The aim is to achieve a sufficient response against human-induced vibrations for a **span of 4.0 m.**

PROJECT CHALLENGES

Pre-drilling hardwood

CHALLENGING

Pre-drilling softwood

CONCLUSIONS AND RECOMMENDATIONS CONCLUSIONS AND RECOMMENDATIONS

- CRESTIMB develops an innovative timber system for multistorey buildings, based on glulam moment-resisting frames (MRTFs), reversible semi-rigid connections with threaded rods, and dowel-cross laminated timber (DCLT) floors.
- 2. The system is designed to support long service life and reusability by addressing creep and mechano-sorptive effects through experimental validation and numerical modelling.
- 3. Short-term analyses confirm feasibility for 4–6 storey buildings with 3 m floor height, 8 m spans, and DCLT floors 250–300 mm thick supported by glulam elements (columns: 430×585 mm, beams: 2×215×585 mm).

ACKNOWLEDGMENTS

This work was funded by CRESTIMB project which is supported under the umbrella of ForestValue2 (Horizon Europe GA no. 101094340)

- The National Science Centre, Poland (research project no. 2023/05/Y/ST11/00182)
- Ministry of Agriculture, Food Sovereignty and Forests of Italy (MASAF) (D.M. no. 150074 del 29/03/2024 CUP no. E13C24000270006),
- The Research Council of Norway (project no. 351919),
- The Department of Agriculture, Food and the Marine of Ireland (DAFM) (Project Ref: 2023FV2252),
- Ministry of Agriculture and Forestry, Finland (Decision number VN/3107/2024).

Thank you for your attention

Martina SCIOMENTA, PhD

University of L'Aquila

