Seeing trees and forests for the future

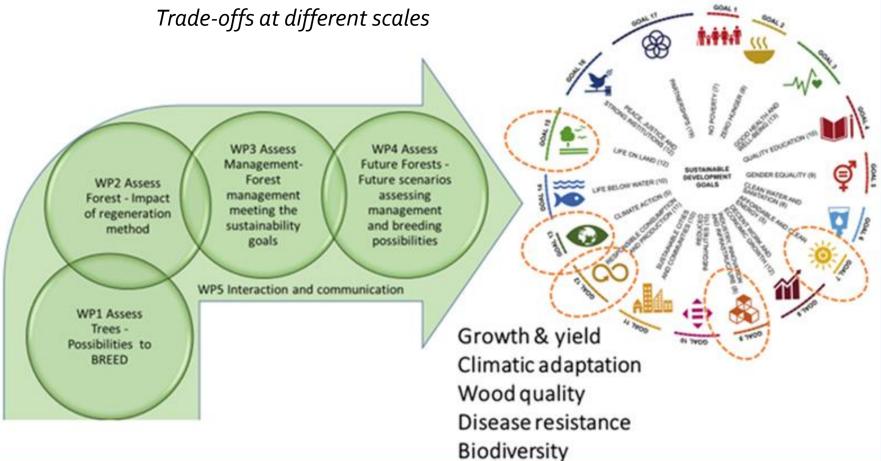
Assess4EST: assessment of trade-offs and potentials to breed and manage forests to meet sustainability goals

Brussels, 14th October 2025

Website: https://www.luke.fi/en/projects/assess4est

Project acronym: Assess4EST

Rosario Garcia-Gil. SLU Sweden Katri Kärkkäinen, Natural Resources Institute Finland



Project idea

Coord. Katri Kärkkäinen Luke

WPL: Rosario Garcia Gil SLU

SU WP1 Trade-offs

- Trade-offs among traits varied by population; for example, the negative genetic correlation between growth and wood stiffness was stronger in southern populations than in northern ones. No clear correlation of chemical composition and growth.
- Positive correlation between growth and drought tolerance, at the cost of genetic diversity
- Genetic models that properly account for population structure are more accurate and less biased.
- Across-generation genomic predictions are feasible for wood properties, but challenging for growth and low-heritability traits.

RESEARCH

Open Access
Implications of accounting for marker-based
population structure in the quantitative genetic
evaluation of genetic parameters related
to growth and wood properties in Norway
spruce

Nach Hoggspleti, Herick R Hillingback, Sone Clot Luddgaglet, Thomas Calin', Gehard Scheepen,
Prefer Hodelmon', 24th Clang Chen', Bank Kakkshem', Huny, Xin¹⁰⁰ and M. Risasio Gastri Gif'

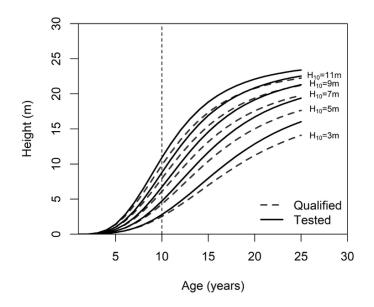
Hayatgheibi et al. BMC Genomic Data (2024) 25:60

Research Open access | Published: 21 July 2025 Cross-generational genomic prediction of Norway spruce (*Picea abies*) wood properties: an evaluation using independent validation

Haleh Hayatgheibi ⊠, Henrik R. Hallingbäck, Salvador A. Gezan, Sven-Olof Lundqvist, Thomas Grahn, Gerhard Scheepers, Sonali Sachin Ranade, Katri Kärkkäinen & M. Rosario García Gil

BMC Genomics 26, Article number: 680 (2025) Cite this article

671 Accesses | 1 Altmetric | Metrics



WPL Aris Jansons SILAVA

WP2

GADA - generalized algebraic difference approach

Objective → new growth functions for silver birch (*Betula pendula*) improved forest reproductive material (FRM) categories 'qualified' and 'tested' up to the midrotation (~ 25 years)

Volume 97, Issue 3 July 2024

JOURNAL ARTICLE

Height growth patterns of genetically improved Scots pine and silver birch Getaccess

Pauls Zeltiņš ™, Āris Jansons, Virgilijus Baliuckas, Ahto Kangur

Forestry: An International Journal of Forest Research, Volume 97, Issue 3, July 2024, Pages 458–468, https://doi.org/10.1093/forestry/cpad057

Published: 20 November 2023 Article history ▼

WPL Jari Hynynen Luke

WP3

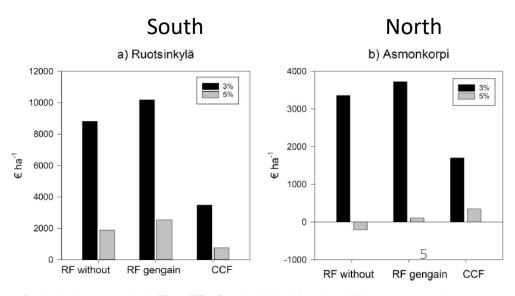
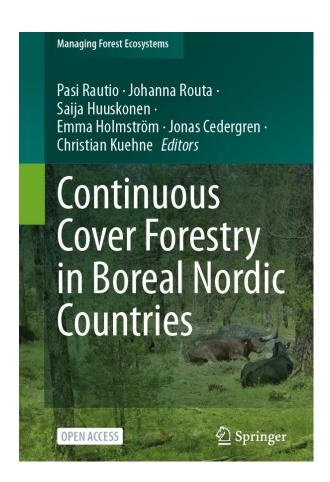


Figure 4. Maximum Bare land values associated with RF and CCF in Ruotsinkylä (a) and Asmonkorpi (b). Interest rate 3% and 5%.


Scandinavian Journal of Forest Research

Taylor & Francis

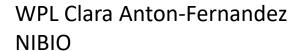
ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/sfor20

Financial comparison between rotation forestry (RF) and continuous cover forestry (CCF) on spruce-dominated peatlands

Anssi Ahtikoski, Jouni Siipilehto, Jaakko Repola, Hannu Hökkä, Mika Lehtonen, Katri Kärkkäinen & Jari Hynynen

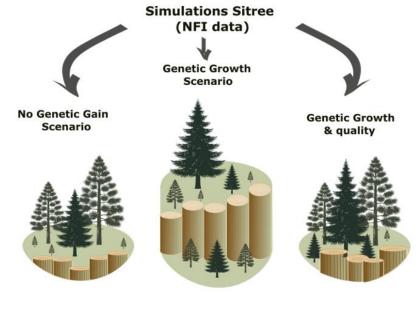
WP1, 2, 3

Chapter 7 Genetic Effects



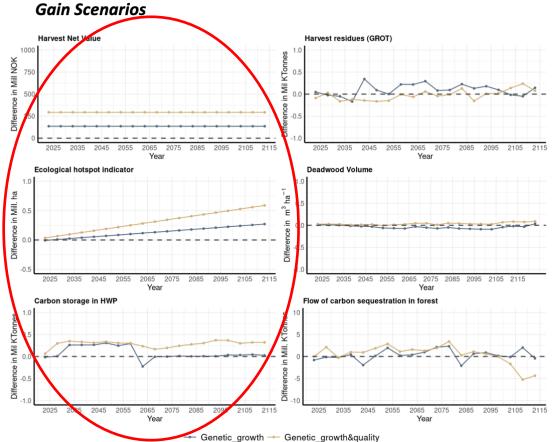
Katri Kärkkäinen, Sonja T. Kujala, Rosario Garcia-Gil, Arne Steffenrem, Johan Sonesson, Liina Hoikkala, Harri Mäkinen, and Sauli Valkonen

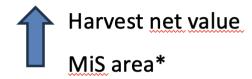
Abstract


- Genetic effects of continuous cover forestry (CCF) are not well known. We need
 more research, especially on the genetics of spruce-dominated CCF sites. Levels
 of relatedness are of interest, as are estimates of safe limits for the intensity and
 duration of CCF practices that secure genetic potential for good growth and
 quality.
- With even-aged forestry, genetically improved regeneration material can be used
 to mitigate climate change-related risks through breeding and deployment recommendations. In CCF, currently based on natural regeneration, we assume that
 enough seedlings establish, and that sites contain enough genetic variation to
 enable natural selection and evolutionary processes.
- Based on research in other regions, the number of reproducing trees must be kept large to avoid excessive levels of relatedness and inbreeding and to maintain sufficient levels of genetic diversity.

Bionergy

Biodiversity

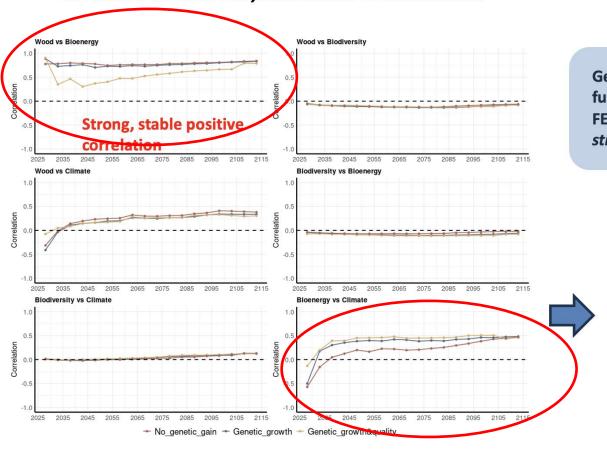

Climate Regulation


Wood

Could the integration of management strategies with genetic gain help mitigate the trade-offs among variuos ecosystem services ???

WP4

Simulation Results: A Comparison of Baseline (scenario without genetic gain) and Two Genetic

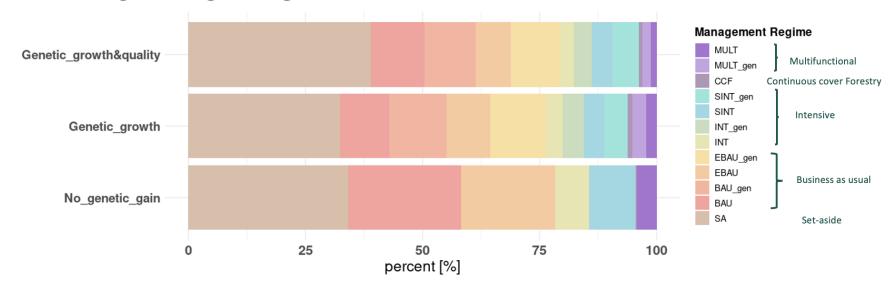

Other indicators (GROT, deadwood volume, carbon sink flow) show smaller or fluctuating differences.

Benefits appear **early** in the planning horizon, despite delayed harvest of improved trees—due to **long-term optimization** anticipating future value.

The increase in ecological hotspot area suggests that genetic improvement can promote stands with larger or older trees, enhancing biodiversity without compromising productivity.

WP4

Correlations between ecosystem services across scenarios:



Genetic improvement doesn't fundamentally change the direction of FES interactions, but it can influence the *strength* of certain relationships

But it can **moderate the strength** of some relationships, where improved productivity enhances their compatibility.

WP4

What changes with genetic gain?

leads to more set-aside areas and a more diverse mix of management regimes.

supports EU biodiversity targets (e.g. 30% protected areas) without major harvest reductions.

avoid pressure on less-utilized or sensitive areas

Regional benefits beyond Norway???

WPL Arne Steffenrem Nibio

WP5

Main results from the stakeholder forums

Industrial needs

- CO₂-neutral resource
- Limited resources today more volume!
- Construction use of wood: will increase
 - Experiences: managed plantation forests are good
 - Preferred: Conifers of high stiffness and low weight
 - Explore: increased use of hardwoods
 - Limitations: Juvenile wood under shorter rotations
- Fiber use is under development, innovations!
 - High interest in birch fibre
 - Softwood from spruce will be more important
- Innovation and flexibility: The most adaptable industry will survive

Forest management scenarios

- Adaptation and risks climate change
 - Adapted and healthy forests are most important!
- Differentiate forest production more to achieve
 - High volumes under intensive short rotation production
 - Mixed species forests
 - Longer rotations and CCF
 - Varied and site specific: the best use of species
- Silviculture and tree breeding important to increase productivity and reduce risks from climate change
- Wood of good quality will always be most useful in competition with steel and concrete
 - Strength weight ratio, knot size, long fibres, reduced fiber angle, improve juvenile wood properties
- In the long run: No need to tailor the timber resource to a specific industry – industry will adapt

Beyond Assess4EST

- Importance of stresses with changing climate
 - Drought
- Importance to assess several options for future forests
 - Closer to nature solutions vs. adapting forests with breeding, assisted migration, widening the selection species used, combining different methods
 - Acceptance of different methods

https://www.luke.fi/en/projects/assess4est

ForestValue

Website: https://forestvalue.org/

Twitter: https://twitter.com/ForestValue2017

LinkedIn: https://www.linkedin.com/groups/12110816/