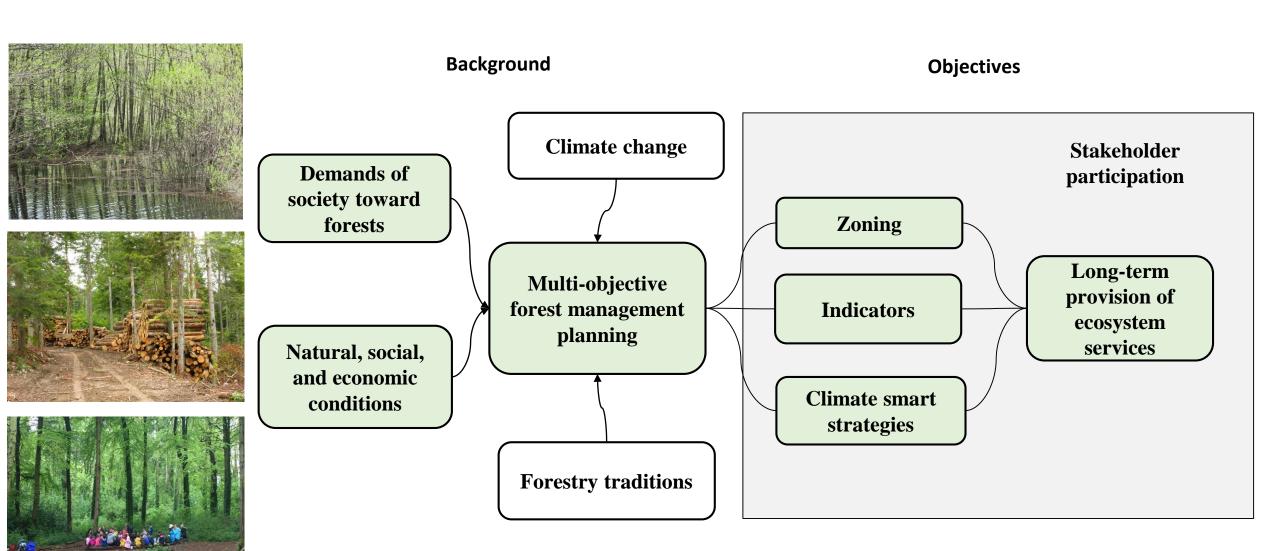
ForestValue2

Innovative spatial FORest PLANning for supporting resilient multifunctional forest management (IFORPLAN)

Bončina A., Korjus H., Mazziotta A., Wierzbicka A., Baskent E.Z., Grošelj P., Kangur A., Põldveer E., Rączka G., Repo A., Simončič T., Trifković V., Žabota B.



IFORPLAN: background and main objectives

IFORPLAN partners and study areas

Partners

University of Ljubljana

UL

Natural Resources Institute Finland

LUKE

Poznań University of Life Sciences

PULS

Estonian

University of Life UT Sciences

Kranjska Gora, Slovenia

Zielonka, Poland

Evo, Finland

Koorküla, Estonia

Project structure and task implementation

WPs	Task implementation (%)								
	0.						 	1	00
WP1 Data management									
WP2 Forest zoning									
WP3 ES provision: alternatives,									
assessment, optimisation									
WP4 Synthesis and managment									
applications									
WP5 Coordination and									
dissemination									

IFORPLAN research questions (Q)

Q1. Is forest zonation through MCDA an effective method for improving multifunctional forest management?

Q2. Do qualitative MCDA methods improve the definition and evaluation of ES indicators compared to classical purely quantitative approaches?

Q3. How can ES provision be linked with effective climate-smart management options?

Q4. Will spatial prioritization and climatesmart forest management be able to supply a sustainable flow of ES?

Q5. Will the integration of stakeholders in the process of forest planning improve the effectiveness of forest management?

WP2 Zoning of priority areas for ES

Purpose

- a basis for objectives and measures
- collaboration with stakeholders
- participation in land use planning
- consideration of ES in forest area

Ecosystem services considered (ES)

- timber
- protection
- recreation
- nature conservation

Stakeholder participation

IFORPLAN tasks

- developing the concept
 - potential & demands
 - participation
- selection of indicators for each ES
 - separately for potential and supply
- weighting of indicators
- producing final maps

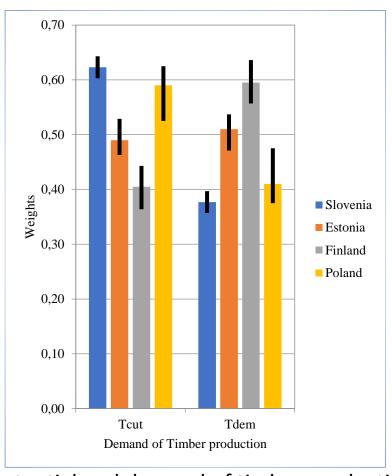
WP2 Selecting indicators for mapping priority areas Examples: timber production and recreation

Timber production

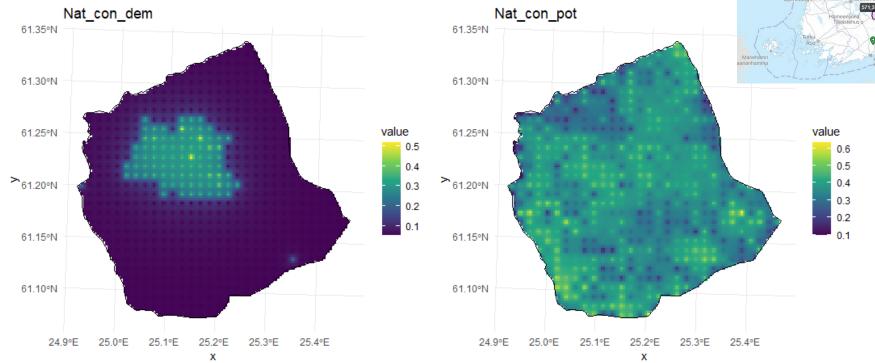
Indicator	Abbr.	Units		
Potential				
Site productivity	SP	m³ ha ⁻¹ y- ¹		
Long-term stand productivity	StP	m³ ha ⁻¹ y- ¹		
Distance to forest roads	DistFR	m		
Accessibility for timber extraction	AccessTE	m		
Topography -inclination	Incl	0		
Topography - rockiness	Rock	%		
Vulnerability of forest community (site) for timber production	Vuln	category		
Legal status of forest area for timber production	TPLegS	category		
Demand				
Recent timber cut	TCut	m³ ha ⁻¹ y- ¹		
Timber demand assessment	Tdem	category		

Recreation

Indicators	Abbr.			
Potential				
Accessibility - road infrastructure	DistFR			
Accessibility - presence of parking lots	DistPA			
Accessibility - availability of public	DistPT			
transport				
Presence / vicinity of recreation	DistRI			
infrastructure				
Presence / vicinity of recreational hotspots	DistRH			
Visual attractiveness – expert assessment	VisA			
Gathering non-wood forest products - expert	NWFP			
assessment				
Demand				
Proximity to populated areas / settlements	DistS			
Density of visitors	DensV			
Recreational demand - expert assessment	RDes			
Legal status - designated areas for recreation	LSdar			



WP2 Weighting indicators for mapping the ES priority areas Example: Timber production



Weights of the indicators and the results of the robustness analysis for potential and demand of timber production

WP2 Zoning of ES priority areas

Evo hiking area, Finland

Nature conservation: potential and demand

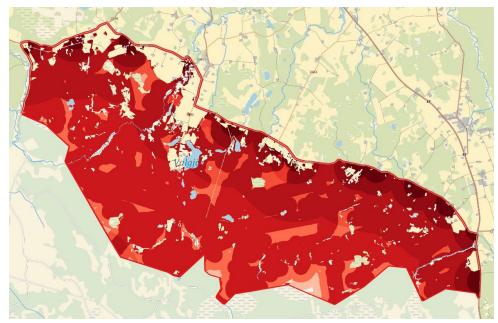
- Forest type: Southern-boreal (Norway spruce & Scots pine).
- Landscape type: Rare old growth forest patches in a mosaic of forest, peatlands and lakes.
- Use: Includes conservation areas (Natura2000), hiking/teaching areas, active forest management.
- Ownership: government, municipalities, private companies and private forest owners.

WP2 Zoning of ES priority areasKoorküla area, Estonia

Total area: 10,120 hectares

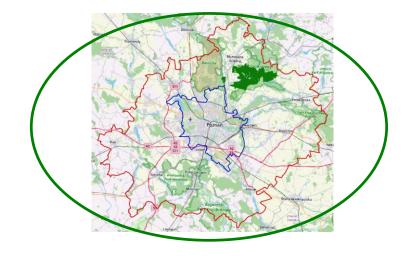
Southern border is Estonia – Latvia borderline

Forests: 88% of area, both state-owned and private


Less than 100 local inhabitants

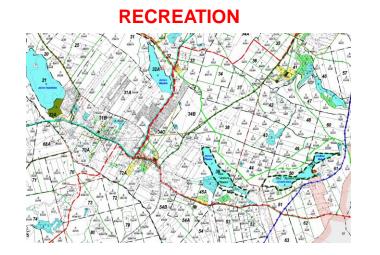
Two NATURA2000 areas and many other conservation sites

One tourist farm and two small recreation sites

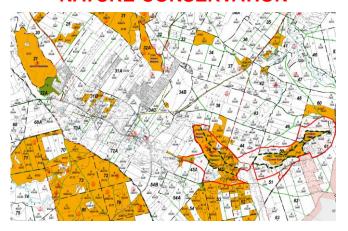


Preliminary results for recreation

WP2 Zoning of ES priority areasZielonka, Poland

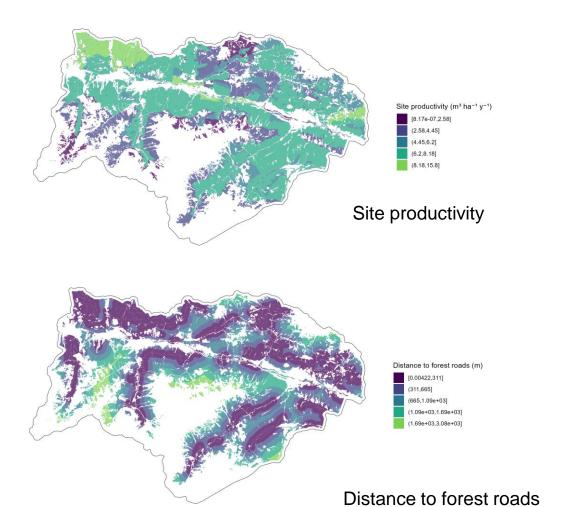

Forest area: 4 000 ha

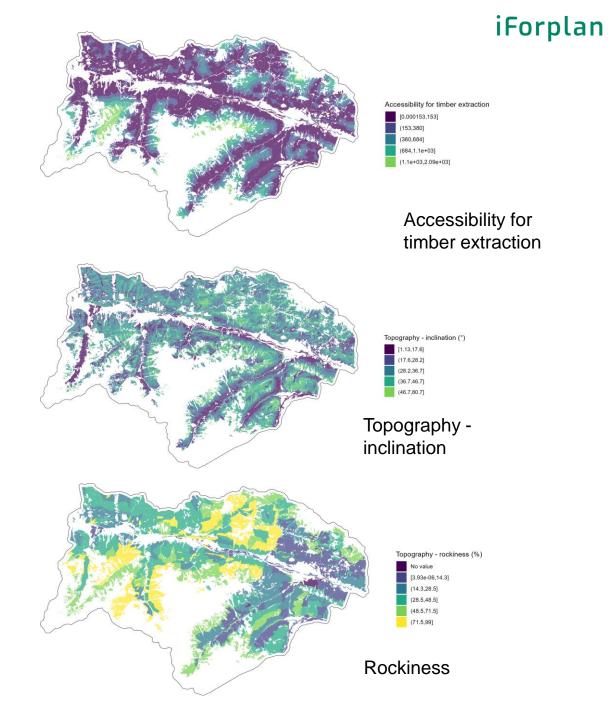
Average volume: 338 m³/ha


Average age: 69 years

Dominant forest site: fresh mixed broadleaved forest (63% of area) Tree species: Scots pine (81% of

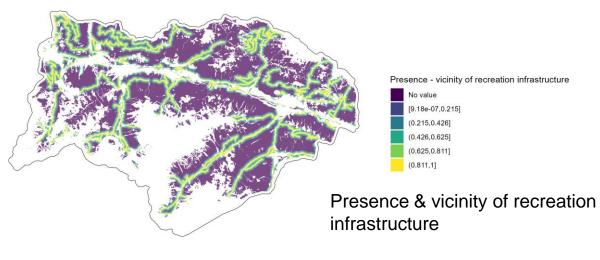
area), oaks (13% of area)

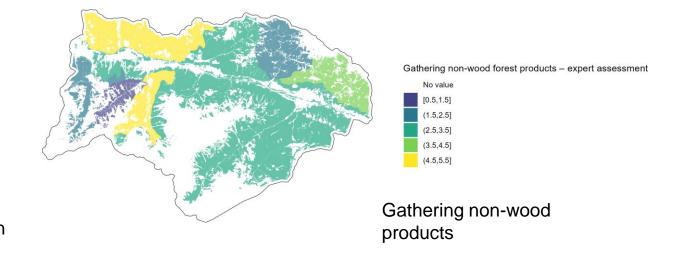

NATURE CONSERVATION

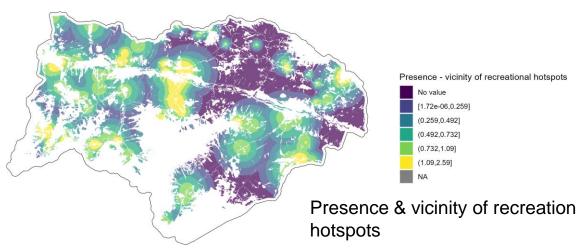


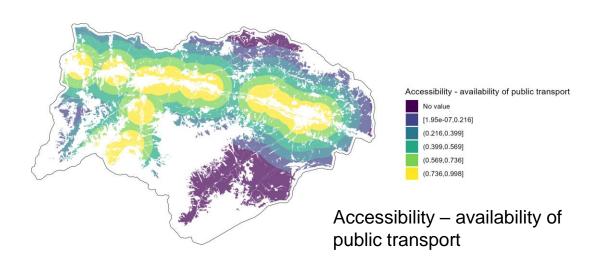
WP2 Zoning of ES priority areas Kranjska Gora, Slovenia

Examples of indicator maps (timber production)

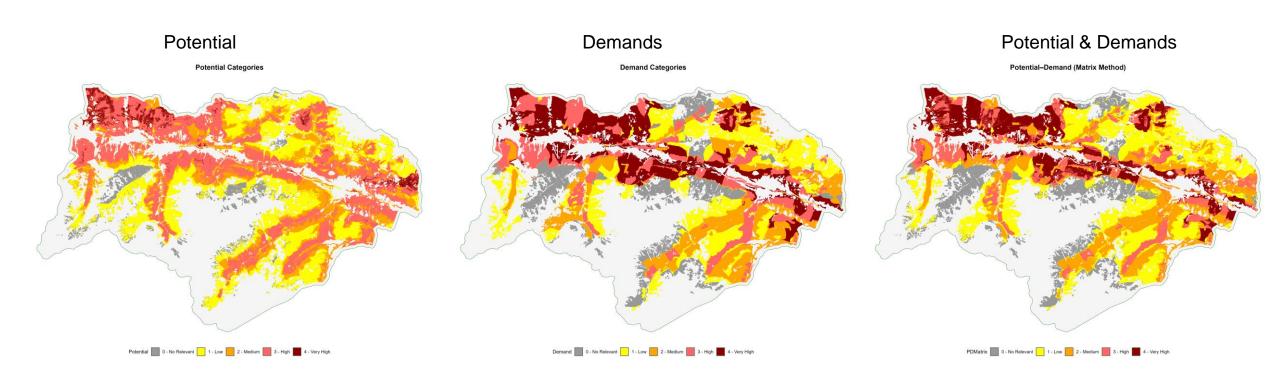





WP2 Zoning of ES priority areas Kranjska Gora, Slovenia


iForplan

Examples of indicator maps (recreation)



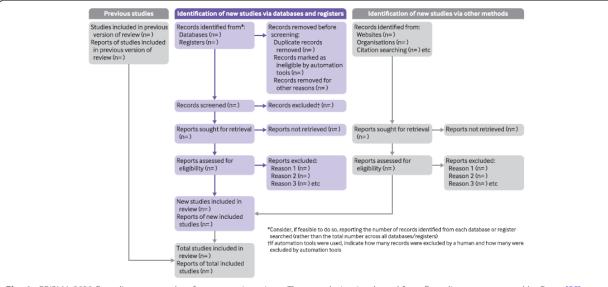
WP2 Zoning of ES priority areas

Kranjska Gora, Slovenia

Example of ES map: Timber production

Papers from WP2

• Grošelj P. & Simončič T. et al: Developing a framework of indicators for assessing potential and supply of forest ecosystem services in four European countries


 Simončič T. et al. Mapping the potential and demand for forest ecosystem services to identify priority areas: experiences from four European countries

WP3 Evaluation of the effect of forest zoning and climate-smart management

D3.1. "A Review of Multi-Criteria Decision Analysis (MCDA) Applications in Assessing Ecosystem Services and Biodiversity in Forests" (leaded by Dr. Anna Repo, Luke, *in progress*)

- Goal and scope of the manuscript: Provide a review and a synthesis on the use of MCDA methods in studies on forest ecosystem services and biodiversity.
- Objectives:
- i) Which MCDA methods to assess ES & BD?
- ii) Which indicators to assess ES & BD?
- iii) How spatial & temporal planning aspects are included in MCDA?
- iv) what type of data sources are employed (remote sensing, field data, expert judgements)?
- v) how current approaches to MCDA integrate decision maker preferences (e.g., type of ownership, stakeholder identity)?

Review Method: Based on the PRISMA* guidelines

Fig. 1 PRISMA 2020 flow diagram template for systematic reviews. The new design is adapted from flow diagrams proposed by Boers [55], Mayo-Wilson et al. [56] and Stovold et al. [57] The boxes in grey should only be completed if applicable; otherwise they should be removed from the flow diagram. Note that a "report" could be a journal article, preprint, conference abstract, study register entry, clinical study report, dissertation, unpublished manuscript, government report or any other document providing relevant information

Article Screening Method:

Al model based on Gemini applied the PRISMA inclusion/exclusion criteria to 301 articles.

^{*}Preferred Reporting Items for Systematic reviews and Meta-Analyses (Page et al. 2021)

IFORPLAN main challenges

- working with people from very different environments
- contributing to novelties in forest planning
 - integrating different data from available sources
 - zoning approach
 - combining qualitative and quantitative methods in decision making
 - effective communication with stakeholders

